

Plenum Low PIM Snap-On 4.3-10 Male to SMA Male Cable SPP-250-LLPL Coax in 100 cm Using Times Microwave Parts

The 4.3-10 male snap-on to SMA male 100 cm cable using SPP-250-LLPL coax, part number FMCA1916-100CM, from Fairview Microwave is in-stock and ships same day. This Fairview 4.3-10 to SMA cable assembly has a male to male gender configuration with 50 ohm corrugated SPP-250-LLPL coax. Fairview Microwave's corrugated RF cable assemblies are ideal for applications where durability and high power are needed. Our low PIM design offers excellent passive intermodulation performance with PIM levels better than -160 dBc. The FMCA1916-100CM 4.3-10 male to SMA male cable assembly operates to 5.8 GHz. Times Microwave cable is used in each assembly and TMS components are used to form connections with the super flexible low PIM cable. These cable assemblies are expertly built to satisfy your specific need with high quality Times Microwave Systems manufactured parts.

Custom versions of most RF cable assemblies can be built and shipped same day. Custom cable assembly lengths can be obtained by specifying the desired length on the web site at time of order or by contacting a sales representative. Other RF cable assembly value added services including connector orientation or clocking, heat shrink booting and labeling are also available. RF testing can also be performed to document the electrical performance of your cable assembly.

Electrical Specifications

DC						
			5.8	G	SHz	
			1.4:1			
	76			%		
100				C	dB	
	-1	.65	-160	d	lBc	
	27 [88.58]		pF/ft [pF/m]			
	0.067 [0.22]		uH/ft [uH/m]			
DC Resistance Inner Conductor				Ω/1000ft [Ω/Km]		
		100 -1 27 [8 0.067	100 -165 27 [88.58] 0.067 [0.22]	76 100 -165 -160 27 [88.58] 0.067 [0.22]	76 100 c 100	

Performance by Frequency

Description	F1	F2	F3	F4	F5	Units
Frequency	0.45	0.7	1	2.5	5.8	GHz
Insertion Loss (Max.)	0.35	0.4	0.44	0.62	0.89	dB

Electrical Specification Notes:

PIM test results vary between cables

The Insertion Loss data above is based on the performance specifications of the coax used in this assembly. The Insertion Loss includes an estimated insertion loss of 0.1*SQRT(FGHz) dB for the 4.3-10 male connector and 0.15 dB for the SMA male connector.

Mechanical Specifications

Cable Assembly

Length*

39.3701 in [100 cm]

FMCA1916-100CM DATA SHEET

Configuration:

- Snap-On4.3-10 Male
- TC-SPP250-4310MS-LP
- SMA Male
- TC-SPP250-SM-LP
- SPP-250-LLPL

Features:

- Max Frequency 5.8 GHz
- Low PIM: -160 dBc Max
- Shielding Effectivity > 100 dB
- 76% Phase Velocity
- FEP Jacket
- 100% Tested with PIM Test Results Marked on Cable
- UL910 Plenum Rated Cable
- Lightweight and Extremely Flexible
- Low Loss with Excellent VSWR
- IP67 (when mated)
- Using Times Microwave Components

Applications:

- General Purpose
- Laboratory Use
- Low PIM Applications
- Distributed Antenna Systems (DAS)
- Plenum Installations
- Multi-Carrier Communication Systems
- PIM Testing

Cable Diagram:

Fairview Microwave 301 Leora Ln., Suite 100 Lewisville, TX 75056 Tel: 1-800-715-4396 / (972) 649-6678 Fax: (972) 649-6689 www.fairviewmicrowave.com sales@fairviewmicrowave.com

Length

Cable

Cable Type SPP-250-LLPL
Impedance 50 Ohms
Inner Conductor Type Solid
Inner Conductor Material and Plating
Dielectric Type PTFE

Number of Shields Shield Layer 1

Outer Conductor Material and Plating

Outer Conductor Diameter

Jacket Material

Jacket Diameter

One Time Minimum Bend Radius

Bending Moment

0.25 in [6.35 mm] FEP, Blue

Helically Corrugated Copper Tube

0.28 in [7.11 mm]

Copper

1.25 in [31.75 mm] 0.8 lbs-ft [1.08 N-m]

Connectors

Description	Connector 1	Connector 2				
Туре	4.3-10 Male	SMA Male				
Impedance	50 Ohms	50 Ohms				
Connection Method	Snap-On					
Contact Material & Plating	Brass, Silver	Brass, Silver				
Contact Plating Spec.	200μ in	196µ in				
Dielectric Type	PTFE	PTFE				
Body Material & Plating	Brass, Tri-Metal	Brass, Tri-Metal				
Body Plating Spec.	80μ in	118µ in				
Coupling Nut Material & Pla	ting Brass, Tri-Metal	Brass, Tri-Metal				
Coupling Nut Plating Spec.	80μ in	118µ in				
Torque	44.25 in-lbs 5 Nr	n 10 in-lbs 1.13 Nm				

Environmental Specifications

Temperature

Operating Range -55 to +200 deg C
Storage Range -55 to +200 deg C
Plenum Rating UL910

Compliance Certifications (see product page for current document)

Plotted and Other Data

Notes:

· Values at 25°C, sea level.

How to Order

Part Number Configuration: FMCA1916 - xx uu | cm = Centimeters | cblank> = Inches

Example: FMCA1916-12 = 12 inches long cable

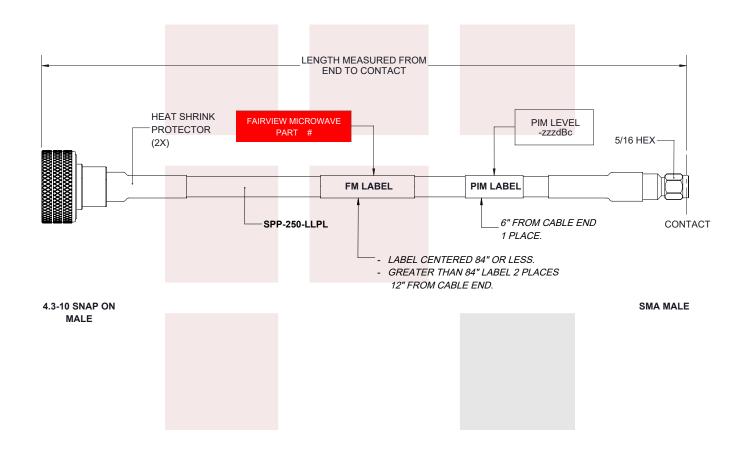
FMCA1916-100cm = 100 cm long cable

301 Leora Ln., Suite 100, Lewisville, TX 75056 | Tel: 1-800-715-4396 / (972) 649-6678 / Fax: (972) 649-6689

Copyright © 2020 REV 1.0 Page 2 of 4

Plenum Low PIM Snap-On 4.3-10 Male to SMA Male Cable SPP-250-LLPL Coax in 100 cm Using Times Microwave Parts from Fairview Microwave has same day shipment for domestic and International orders. Our RF, microwave and millimeter wave products maintain a 99% availability and are part of the broadest selection in the industry.

Click the following link to obtain additional part information: Plenum Low PIM Snap-On 4.3-10 Male to SMA Male Cable SPP-250-LLPL Coax in 100 cm Using Times Microwave Parts FMCA1916-100CM


The information contained in this document is accurate to the best of our knowledge and representative of the part

URL: https://www.fairviewmicrowave.com/low-pim-4.3-10-male-sma-male-cable-spp250llpl-coax-fmca1916-100cm-p. aspx

described	herein. I	t may be	necessar	y to ma	ke modifica	ations to t	he part a	nd/or t	he docum	entation	of the part	t, in order
to implem	ent impro	vements.	. Fairview	/ Microw	ave reserv	es the rigl	nt to mak	e such	changes a	as require	d. Unless	otherwise
					w Microwa							
					y particulai	purpose,	and Fair	view Mi	crowave	does not	assume ar	ny liability
arising ou	t of the us	se of any	part or de	ocument	ation.							

FMCA1916-100CM DATA SHEET

STANDARD TOLERANCES
.X ±0.2

.XX ±0.01 .XXX ±0.005

*STANDARD TOLERANCES APPLY ONLY TO DIMENSIONS IN INCHES

Fairview Microwave an INFINIT® brand	NOTES: 1. UNLESS OTHERWISE SPECIFIED ALL DIMENSIONS ARE NOMINAL. 2. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE AT ANY TIME. 3. DIMENSIONS ARE IN INCHES [mm].								
Plenum Low PIM Snap-On 4.3-10 Male to SMA Male		DWG NO FMCA1916					CAGE CODE 3FKR5		
Cable SPP-250-LLPL Coax in 100 cm Using Times Microwave Parts	CAD FILE	06/05/19	SHEET	1 OF 1	SCAL	E N/A	SIZE A	7361	